
总分 bitAnd bitXor logtwo byteSwap reverse samesign logicalShift leftBitCount float_i2f floatScale2 float64_f2

37.00 1.00 1.00 4.00 4.00 3.00 2.00 3.00 4.00 4.00 4.00 3.00

test 截图：

解题报告

亮点

logtwo
byteSwap
floatScale2

logtwo

int logtwo(int v) {

 int pos = 0;

 int shift = ((v >> 16) > 0) << 4;

 pos |= shift;

 v >>= shift;

 shift = ((v >> 8) > 0) << 3;

 pos |= shift;

 v >>= shift;

 shift = ((v >> 4) > 0) << 2;

 pos |= shift;

 v >>= shift;

 shift = ((v >> 2) > 0) << 1;

 pos |= shift;

 v >>= shift;

 shift = (v >> 1) > 0;

 pos |= shift;

 return pos;

}

亮点：使用二分查找的思想确定有效最高位

本题的思路是找到 v 的有效最高位，也即找到第一个是 1 的位。在这里可以使用二分查找来找有效最高位。
如果 v >> 16 > 0 ，说明高 16 位中有 1 ，那么最高位一定在高 16 位，于是把位置向右移 16 位，并记录偏移量 16 。由于布尔表达式
 ((v >> 16) > 0) 为真时值为 1 ，所以可以直接左移 4 位达到乘 16 的效果。以此类推，可以依次这样判断高 8 位、高 4 位、高 2 位以及第
一位，并分别用左移代替乘法来记录偏移量，从而达到二分查找的效果。

byteSwap
亮点：利用异或 (XOR) 运算实现字节交换
本题的思路是使用异或(XOR)运算达到交换的效果。由于异或运算的性质： a ^ a = 0 , a ^ b = b ^ a ， a ^ 0 = a ，所以可以先通过异或运算求这两
部分字节的“差异”，再通过两部分分别异或这个“差异”来转换成另一个字节。这个思路和不用临时变量实现两数交换的思想是类似的。

求两个待交换字节的“差异”
首先分别将待交换字节移动到最低字节，异或求差异后将其他位设为0：

int diff = (((x >> (n << 3))) ^ ((x >> (m << 3)))) & 0xff;

将待交换字节与“差异”异或
将“差异”放到待交换的字节位置，之后与 x 异或得到交换后结果

diff = (diff << (n << 3)) | (diff << (m << 3));

return x ^ diff;

floatScale2
亮点：特殊情况处理、分类

本题的思路是：

对于规格化数则增加阶码实现乘 2。
对于非规格化数则左移尾数实现乘 2。
对于特殊值（NaN、Inf）则保持不变。
分解浮点数结构

首先提取符号位、阶码和尾数：

sign = uf & (1 << 31)

exp = (uf >> 23) & 0xff

frac = uf & 0x7fffff

处理特殊情况

若 exp == 0xff ，说明 uf 是 NaN 或无穷大，直接返回原值：

if (exp == 0xff) return uf;

处理非规格化数

当 exp == 0 时，说明这是一个非规格化数。
直接将尾数左移一位，相当于乘 2：

frac <<= 1;

如果左移后最高位被移出，说明应当进位到阶码：

if (frac & (1 << 31)) {

 exp = 1;

 frac &= 0x7fffff;

}

处理规格化数

当 exp != 0 && exp != 0xff 时，是正常的浮点数。
阶码加 1，相当于乘 2：

exp += 1;

若加 1 后阶码溢出到 0xff，说明结果为无穷大：

if (exp == 0xff)

 frac = 0;

重组得到结果

将符号位、阶码位、尾数位重新组合成 32 位浮点表示：

return sign | (exp << 23) | frac;

bitXOR
用 (x & y) | (~x & ~y) 来模拟异或，但由于不允许使用 | ，所以使用德摩根律，即可得到结果 ~(x & y) & ~(~x & ~y) 。

samesign
本题主要需要注意对 0 的处理。若 x 与 y 均为 0 则返回 1 ， x 与 y 中有一个为 0 时返回 0 。其他情况则通过将最高位（符号位）移到最低位，
然后通过异或比较即可。

reverse
本题思路是通过逐位提取和重组来完成 32 位整数的二进制反转。

unsigned res = 0;

 for (int i = 0; i - 32; i++) {

 res <<= 1;

 res |= (v & 1);

 v >>= 1;

 }

使用一个循环迭代 32 次。每次循环中，将 res 左移一位，为当前最低位腾出位置；随后将输入 v 的最低位 v & 1 添加到结果末尾；最后将输入右移
一位，为下一位的处理做准备。循环结束后， res 即为所求。

logicalShift
本题的思路是首先对输入执行算术右移，然后用掩码去掉可能被符号扩展的高位。掩码的生成方法是：

~(((1 << 31) >> n) << 1)

先生成一个最高位为 1 的数 1 << 31 ，即 0x80000000 ，然后右移 n 位，接着左移一位并取反，得到高 n 位全为 0 ，其余位为 1 的掩码。最后将
结果与掩码按位与，从而得到逻辑右移的效果。这种实现思路结合了位移和掩码操作，保证了右移操作的逻辑正确性而不依赖条件分支。

leftBitCount
本题也使用了二分的思想。

首先，用变量 pos 记录当前连续 1 的数量。随后，程序从高位到低位依次检测 16 位、 8 位、 4 位、 2 位和 1 位。每次检测都通过构造掩码并判断
当前区间是否全为 1 来实现。如果该区间确实全部为 1 （即 (x >> n) & mask == mask ），则将 pos 增加对应的位宽，并保持 x 不变；若不全为
 1 ，则将 x 右移对应位数，进入更小范围检测。第一次检查高 16 位是否全为 1 ，若是则至少有 16 个连续的 1 ，否则右移 16 位继续判断。接着检
查高 · 8 位是否全为 1 ，以此类推，直到逐位判断剩下的最高几位。最后的 pos += !(x ^ 0xffffffff) 用于检查最后一位是否为 1 。

float_i2f
本题的思路是求出 IEEE 754 单精度浮点数位级表示的每一部分。

处理特殊情况

处理x == 0 和 x 是 int 类型下界的情况：

if (!x) return 0;

if (x == 0x80000000) return 0xcf000000;

求出符号位，并取 x 绝对值
若 x < 0 则符号位为 1 ：

unsigned sign = 0;

if (x < 0) {

 sign = 0x80000000;

 x = ~x + 1;

}

求出有效最高位与指数部分

从 x 最高位开始，向后找到第一个为 1 的位。

int temp = 31;

while (!(x & (1 << temp))) temp -= 1;

temp + bias 即为 exp：

unsigned exp = temp + 127;

计算尾数部分

先将最高位 1 左移到最高位
右移 8 位后用掩码 0x7fffff 截取低 23 位作为尾数

unsigned frac = ((x << (31 - temp)) >> 8) & 0x7fffff;

舍入

计算被舍弃的 8 位，并进行舍入

unsigned rem = (x << (31 - temp)) & 0xFF;

if (rem > 0x80) frac += 1;

if (rem == 0x80)

 if ((frac & 1) == 1) frac += 1;

if (frac == 0x800000) {

 frac = 0;

 exp += 1;

}

exp <<= 23;

float64_f2i
本题的思路是，将输入的由高 32 位 uf2 和低 32 位 uf1 组成的 64 位双精度浮点数解析为符号位、阶码和尾数三个部分。

先计算出实际指数

，再根据指数范围判断结果是否为 0 、溢出或正常可转换的整数。当指数小于 0 时，浮点数绝对值小于 1 ，结果为 0 ；当指数过大（ >31 ）时，超出
 32 位整数表示范围，返回 0x80000000 。对规格化数，补上隐藏的 “ 1 ” 得到完整尾数，然后根据指数 E 的大小决定左移或右移尾数，使其对应到整数范
围。最后若符号位为 1 ，则对结果取补码得到负数，返回最终的 32 位整数。

floatPower2
本题的思路是：题目要求计算 2.0 的 x 次幂，而浮点数中阶码表示的意义恰好是2的幂。因此，得到的浮点数是一个符号位为 0 ，尾数部分也为 0 ，
只需要求 exp 即可。分四种情况：

若下溢，则返回 0
若 -126 ≤ x < 0 ，用非规格化数表示
若太大，返回 +inf
其余情况返回 exp << 32

反馈/收获/感悟/总结

Datalab 是我在国庆假期陆续完成的。从最开始对位运算、移位运算、整数与浮点数的底层表示的陌生，到现在的熟悉，我感觉收获了很多。

首先还是对位运算、移位运算的一些技巧的掌握，也学会了用位运算替代一些以前习惯使用的运算，比如用 | 代替 + ，用 ~ 代替 - ， 用 << 代替乘
法， 用 >> 代替除法。这些技巧在我做算法练习题的时候也发挥了作用，比如Leetcode 136.只出现一次的数字，就可以用异或运算。

有些题目相当烧脑，耗费了我大量的时间，但最后攻克难题后，必须承认这是一个很有启发性的的 lab 。

其次学到整数与浮点数的底层表示也让我受益颇多，让我对这两种数据类型有了更深入的理解，同时也让我意识到我以前写出的种种 bug 到底是从何而
来。

总体上还是挺不错的。感谢助教们耐心的答疑与帮助！

参考的重要资料

一文彻底掌握浮点数

浮点数详解（一篇彻底学通浮点数）

E = exp− 1023

https://zhuanlan.zhihu.com/p/674906821
https://blog.csdn.net/weixin_45863060/article/details/125054244

